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Abstract 

In our final project, we worked on developing and comparing machine learning models for predicting               
traffic volume, given inputs of weather, time, temperature, and holiday timing data. We cleaned a large                
dataset in R and then implemented two versions of machine learning models; an SVM using python’s                
scikit-learn library, and a neural network using python’s keras library. 

Data Cleaning 

Before we could create any machine learning models from our dataset, we first had to edit the data such                   
that it would be useful for the model, and our language of choice was R, as it is useful for this type of                       
manipulation and visualization. After importing the data file to a data frame, it was examined by hand to                  
see if there were any extreme outliers or erroneous data. There is a considerable amount of bad data in the                    
set to begin with, including temperature readings of absolute zero, unrealistic rainfall and snowfall              
amounts, and duplicated time values. Code was written to remove all of these things from the dataset,                 
although only complete duplicate rows were eliminated rather than all rows with duplicate time values, as                
there was no way to determine which of the two or more rows is correct. Once the data was prepped for                     
editing, the following libraries were used in order to properly manipulate the data: ggplot2 (plotting),               
dplyr and plyr (general data manipulation), and lubridate (date and time manipulation). 

The first action taken was to fix the date and time column such that it could be converted into a numerical                     
representation of the two. Once this was established, new columns representing the hour, day of the week,                 
month, and year were all recorded as new columns, the first three being for input into the ML algo, and                    
the last being for separating data. After plotting seven 1D scatterplots, each for every day of the week, it                   
was determined that weekends are distinct from weekdays in terms of traffic but otherwise there was no                 
difference between the two. Next, the issue of holidays was dealt with by plotting their traffic volume for                  
all of the holidays on separate 1D scatter plots plotted next to each other such that visual groupings could                   
be made for the data, if a holiday experienced traffic similar to a normal day, it was grouped in with                    
normal days, and if a holiday experienced traffic far less than a normal day it was marked as such, such                    
that a row’s holiday column was either a 0 (normal day or high traffic holiday) or a 1 (low traffic                    
holiday). While visual grouping isn’t always a good thing it worked out well here due to the distinct                  
nature of the holidays in our dataset, and some simple attempts at grouping statistically (testing for if a                  
holiday’s 95th percentile is less than the 68th percentile of a normal day).  

Finally, the weather_main column was split into multiple columns, each a boolean representing if the day                
was a certain weather condition or not, as categorical data did not seem to work well with our models.                   
Finally, all of the numeric columns were normalized and the data was exported to two CSV files, one with                   
the original data and the other with the normalized data. 
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SVM Implementation and Results 

For the SVM implementation, we used scikit-learn’s SVR support vector regression framework. We             
implemented 5-Fold cross validation on the C parameter (penalty of errors) and the kernel function used                
(we compared the ‘linear’ and ‘rbf’ functions).  

For validation, training, and testing, we picked 200 random samples from the dataset. The SVR sklearn                
implementation scales quadratically with the number of samples, making larger sample sizes infeasible             
for our project time frame. Because of this, at least in terms of efficiency, support vector regression would                  
not be an ideal machine learning model for this data set. Below are the results of our 5 fold cross                    
validation (which was limited because of the time complexity of the SVR). The ‘linear’ kernel function                
combined with a C error penalty of 31.6 proved to be the best hyper parameters for this model. 

 

 

 

 

 

 

 

 

Below is a graph of the fitness of our final results. The x axis corresponds to actual traffic volume and y                     
axis refers to the SVR predicted traffic volume. The orange line represents the results of an ideal perfect                  
predictor (where predicted is equal to real traffic volume). 
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Multi-Layer Perceptron - Implementation and Result 

Due to the complexity of the relationship between both the time-related features and weather-related              
features in our dataset to their corresponding labels, the model attempted above may not be suitable for                 
this dataset. A more flexible model which can handle lots of complexity in the underlying data is a Neural                   
Network. Specifically, a multi-layer perceptron with many hidden nodes can capture what other structural              
machine learning models can’t. 

 
The package we used to build and train the neural net was sklearn’s MLP Regressor. This package offers                  
plenty of hyperparameters for tuning but abstracts a healthy amount of work in order to reduce the time it                   
takes to code. We chose to use the Adam solver, since it is generally accepted as state-of-the-art and very                   
robust for many different applications since it is essentially an extension to momentum and stochastic               
gradient descent. Based on this, the first hyperparameter we tuned for was the learning rate. We found a                  
learning rate of 0.01 avoided issues with the error not converging during training and for this reason we                  
used it for the rest of the models trained. Further, we found that there was little improvement in adding                   
more than three hidden layers and therefore this was also not tweaked further.  

 
We then decided to run grid-search on two        
more hyperparameters: Perceptrons in each     
layer and the activation functions. The      
result of these experiments can be seen on        
the right. Through limiting the amount of       
hyperparameters being tuned during this     
time, our computational expense was     
significantly reduced. One thing to note is       
that we did not use k-fold cross validation        
as it is much more computationally heavy. Instead, we split the data into training and validation data,                 
training the data on the former and testing each individual hyperparameter set on the latter. Only during                 
the final evaluation of the model would we use a third set of data, the testing set. This ensures we avoid                     
any overfitting, both when training and when tuning. It may not be as effective as cross validation but it                   
allows us to tune for more hyperparameters. The results showed 70 perceptrons with ReLU performed the                
best.  

 
In order to evaluate this model, it is important to remember that it is a regression-based neural network 
and therefore is not aiming to classify traffic volume into “bins.” One could design a problem such as this 
by classifying “high,” “medium,” or “low” traffic rather than exact values, but we thought this approach 
would be more advantageous. Since it is not a classification problem, an ROC curve doesn’t make sense, 
but we can create an alike curve which is inspired by the measures an ROC curve attempts to show. In a 
traditional ROC curve the y-axis shows the true positive rate while the x-axis shows the false positive 
rate. That is, the rate of how many positive classifications were correct over the rate of how many positive 
classifications were incorrect. Instead, we can define an allowable margin of error for the prediction made 
by the model, and compare this to the rate of correct predictions the model makes with such a threshold. 
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The graph below shows exactly this: 

 

 

 

 

 

 

 

 

 

Much like an ROC curve, a perfect model would have these points in the top left corner: with 100%                   
accuracy on no allowable error (exact predictions necessary). Our model performs quite well here, and we                
can deduce that at 10% allowable error in predictions, the model predicts the correct traffic volume 58%                 
of the time. At 20% allowable error, the model predicts the correct traffic volume even better, at 82%. 

 

Conclusion 

There is a distinct and predictable relationship between the traffic volume and weather and time. This                
relationship is complex and may not be best explained by a support-vector machine, but rather by models                 
that can handle more complex relationships between data, such as multi-layer perceptrons. Even with              
fairly limited data pre-processing and hyperparameter tuning of a neural network, the results showed an               
impressive accuracy for predicting traffic volume. 

If we were to have further resources and time devoted to this project, we would likely spend additional                  
time on feature selection. Deciding which features to include in the model, and constructing cross-features               
through data mining techniques may prove to help a model find even better relationships in the data that                  
aren’t immediately apparent. Further, we would have liked to spend more time with hyperparameter              
tuning of these models since computational time limited the hyperparameters we could tune and the               
combinations we could test. With these two extensions we are confident a model could perform even                
better on this dataset.  
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